Since 2007, when the housing and credit crises started to unfold, we’ve seen unemployment rates continue to rise (9.7% in March 2010 *) with very few indicators that they will return to levels that indicate a healthy economy any time soon. I’ve also found myself reading about the hardship and challenge that people are facing in today’s economy, and the question of creditworthiness keeps coming into my mind, especially as it relates to employment, or the lack thereof, by a consumer. Specifically, I can’t help but sense that there is a segment of the unemployed that will soon possess a better risk profile than someone who has remained employed throughout this crisis. In times of consistent economic performance, the static state does not create the broad range of unique circumstances that comes when sharp growth or decline occurs. For instance, the occurrence of strategic default is one circumstance where the capacity to pay has not been harmed, but the borrower defaults on the commitment anyway. Strategic defaults are rare in a stable market. In contrast, many unemployed individuals who have encountered unfortunate circumstances and are now out of work may have repayment issues today, but do possess highly desirable character traits (willingness to pay) that enhance their long-term desirability as a borrower. Although the use of credit score trends, credit risk modeling and credit attributes are essential in assessing the risk within these different borrowers, I think new risk models and lending policies will need to adjust to account for the growing number of individuals who might be exceptions to current policies. Will character start to account for more than a steady job? Perhaps. This change in lending policy, may in turn, allow lenders to uncover new and untapped opportunities for growth in segments they wouldn’t traditionally serve. * Source: US Department of Labor. http://www.bls.gov/bls/unemployment.htm
A common request for information we receive pertains to shifts in credit score trends. While broader changes in consumer migration are well documented – increases in foreclosure and default have negatively impacted consumer scores for a group of consumers – little analysis exists on the more granular changes between the score tiers. For this blog, I conducted a brief analysis on consumers who held at least one mortgage, and viewed the changes in their score tier distributions over the past three years to see if there was more that could be learned from a closer look. I found the findings to be quite interesting. As you can see by the chart below, the shifts within different VantageScore® credit score tiers shows two major phases. Firstly, the changes from 2007 to 2008 reflect the decline in the number of consumers in VantageScore® credit score tiers B, C, and D, and the increase in the number of consumers in VantageScore® credit score tier F. This is consistent with the housing crisis and economic issues at that time. Also notable at this time is the increase in VantageScore® credit score tier A proportions. Loan origination trends show that lenders continued to supply credit to these consumers in this period, and the increase in number of consumers considered ‘super prime’ grew. The second phase occurs between 2008 and 2010, where there is a period of stabilization for many of the middle-tier consumers, but a dramatic decline in the number of previously-growing super-prime consumers. The chart shows the decline in proportion of this high-scoring tier and the resulting growth of the next highest tier, which inherited many of the downward-shifting consumers. I find this analysis intriguing since it tends to highlight the recent patterns within the super-prime and prime consumer and adds some new perspective to the management of risk across the score ranges, not just the problematic subprime population that has garnered so much attention. As for the true causes of this change – is unemployment, or declining housing prices are to blame? Obviously, a deeper study into the changes at the top of the score range is necessary to assess the true credit risk, but what is clear is that changes are not consistent across the score spectrum and further analyses must consider the uniqueness of each consumer.
By: Wendy Greenawalt Optimization has become somewhat of a buzzword lately being used to solve all sorts of problems. This got me thinking about what optimizing decisions really means to me? In pondering the question, I decided to start at the beginning and really think about what optimization really stands for. For me, it is an unbiased mathematical way to determine the most advantageous solution to a problem given all the options and variables. At its simplest form, optimization is a tool, which synthesizes data and can be applied to everyday problems such as determining the best route to take when running errands. Everyone is pressed for time these days and finding a few extra minutes or dollars left in our bank account at the end of the month is appealing. The first step to determine my ideal route was to identify the different route options, including toll-roads, factoring the total miles driven, travel time and cost associated with each option. In addition, I incorporated limitations such as required stops, avoid main street, don’t visit the grocery store before lunch and must be back home as quickly as possible. Optimization is a way to take all of these limitations and objectives and simultaneously compare all possible combinations and outcomes to determine the ideal option to maximize a goal, which in this case was to be home as quickly as possible. While this is by its nature a very simple example, optimizing decisions can be applied to home and business in very imaginative and effective means. Business is catching on and optimization is finding its way into more and more businesses to save time and money, which will provide a competitive advantage. I encourage all of you to think about optimization in a new way and explore the opportunities where it can be applied to provide improvements over business-as-usual as well as to improve your quality of life.
Recently, the Commerce Department reported that consumer spending levels continued to rise in February, increasing for the fifth straight month *, while flat income levels drove savings levels lower. At the same time, media outlets such as Fox Businesses, reported that the consumer “shopping cart” ** showed price increases for the fourth straight month. Somewhat in opposition to this market trend, the Q4 2009 Experian-Oliver Wyman Market Intelligence Reports reveal that the average level of credit card debt per consumer decreased overall, but showed increases in only one score band. In the Q4 reports, the score band that demonstrated balance increases was VantageScore® credit score A – the super prime consumer - whose average balance went up $30 to $1,739. In this time of economic challenge and pressure on household incomes, it’s interesting to see that the lower credit scoring consumers display the characteristics of improved credit management and deleveraging; while at the same time, consumers with credit scores in the low-risk tiers may be showing signs of increased expenses and deteriorated savings. Recent delinquency trends support that low-risk consumers are deteriorating in performance for some product vintages. Even more interestingly, Chris Low, Chief Economist at FTN Financial in New York was quoted as saying "I guess the big takeaway is that consumers are comfortably consuming again. We have positive numbers five months in a row since October, which I guess is a good sign,". I suggest that there needs to be more analysis applied within the details of these figures to determine whether consumers really are ‘comfortable’ with their spending, or whether this is just a broad assumption that is masking the uncomfortable realities that lie within.
By: Wendy Greenawalt In my last few blogs, I have discussed how optimization can be leveraged to make improved decisions across an organization while considering the impact that opimizing decisions have to organizational profits, costs or other business metrics. In this entry, I would like to discuss how optimization is used to improve decisions at the point of acquisition, while minimizing costs. Determining the right account terms at inception is increasingly important due to recent regulatory legislation such as the Credit Card Act. Doing so plays a role in assessing credit risk, relationship managment, and increasing out of wallet share. These regulations have established guidelines specific to consumer age, verification of income, teaser rates and interest rate increases. Complying with these regulations will require changes to existing processes and creation of new toolsets to ensure organizations adhere to the guidelines. These new regulations will not only increase the costs associated with obtaining new customers, but also the long term revenue and value as changes in account terms will have to be carefully considered. The cost of on-boarding and servicing individual accounts continues to escalate while internal resources remain flat. Due to this, organizations of all sizes are looking for ways to improve efficiency and decisions while minimizing costs. Optimizing decisions is an ideal solution to this problem. Optimized strategy trees (trees that optimize decisioning strategies) can be easily implemented into current processes to ensure lending decisions adhere to organizational revenue, growth or cost objectives as well as regulatory requirements. Optimized strategy trees enable organizations to create executable strategies that provide on-going decisions based upon optimization conducted at a consumer level. Optimized strategy trees outperform manually created trees as they are created utilizing sophisticated mathematical analysis and ensure organizational objectives are adhered to. In addition, an organization can quantify the expected ROI of decisioning strategies and provide validation in strategies – before implementation. This type of data is not available without the use of a sophisticated optimization software application. By implementing optimized strategy trees, organizations can minimize the volume of accounts that must be manually reviewed, which results in lower resource costs. In addition, account terms are determined based on organizational priorities leading to increased revenue, retention and profitability.
By: Wendy Greenawalt Financial institutions have placed very little focus on portfolio growth over the last few years. Recent market updates have provided little guidance to the future of the marketplace, but there seems to be a consensus that the US economic recovery will be slow compared to previous recessions. The latest economic indicators show that slow employment growth, continued property value fluctuations and lower consumer confidence will continue to influence the demand and issuance of new credit. However, the positive aspect is that most analysts agree that these indicators will improve over the next 12 to 24 months. Due to this, lenders should start thinking about updating acquisition strategies now and consider new tools that can help them reach their short and long-term portfolio growth goals. Most financial institutions have experienced high account delinquency levels in the past few years. These account delinquencies have had a major impact to consumer credit scores. The bad news is that the pool of qualified candidates continues to shrink so the competition for the best consumers will only increase over the next few years. Identifying target populations and improving response/booking rates will be a challenge for some time so marketers must create smarter, more tailored offers to remain competitive and strategically grow their portfolios. Recently, new scores have been created to estimate consumer income and debt ratios when combined with consumer credit data. This data can be very valuable and when combined with optimization (optimizing decisions) can provide robust acquisition strategies. Specifically, optimization / optimizing decisions allows an organization to define product offerings, contact methods, timing and consumer known preferences, as well as organizational goals such as response rates, consumer level profitability and product specific growth metrics into a software application. The optimization software will then utilize a proven mathematical technique to identify the ideal product offering and timing to meet or exceed the defined organizational goals. The consumer level decisions can then be executed via normal channels such as mail, email or call centers. Not only does optimization software reduce campaign development time, but it also allows marketers to quantify the effectiveness of marketing campaigns – before execution. Today, optimization technology provide decision analytics accessible for organizations of almost any size and can provide an improvement over business-as-usual techniques for decisioning strategies. If your organization is looking for new tools to incorporate into existing acquisition processes, I would encourage you to consider optimization and the value it can bring to your organization.
By: Kari Michel Lenders want to find new customer through more informed credit risk decisions and use new types of data relationships to cross-sell. The strategic goals of any company are to get more customers and revenue while reducing costs on the operating side and the credit loss side. Some of the ways to meet these goals are to improve operating efficiency in creating and managing credit attributes, which represent the building blocks of how lenders make customer decisions. Lenders face many challenges in leveraging data from multiple credit and non-credit sources (e.g. credit bureaus) and maintaining data attributes across multiple systems. Furthermore, a lack of access to raw data makes it difficult to create effective, predictive attributes. Simply managing the discrepancies between specifications and code can become a very time consuming effort. Maintaining a common set of attributes used in many types of scorecards and decision types often becomes difficult. As a result, there is a heavy reliance on external people and technical resources to find the right tools to try and pull the data sources and attributes together. In an ideal situation, a lender should be able to easily access raw data elements across multiple sources and aggregate the data into meaningful attributes. Experian can offer these capabilities through its Attribute Toolbox product, allowing one or more systems to access a common set of standard analytics. A set of highly predictive attributes, Premier Attributes, are available and offers a much more effective solution for managing standard attributes across an enterprise. With the use of these tools, lenders can decrease maintenance costs by quickly integrating data and analytics into existing business architecture to make profitable decisions.
By:Wendy Greenawalt In my last few blogs, I have discussed how optimizing decisions can be leveraged across an organization while considering the impact those decisions have to organizational profits, costs or other business metrics. In this entry, I would like to discuss how this strategy can be used in optimizing decisions at the point of acquisition, while minimizing costs. Determining the right account terms at inception is increasingly important due to recent regulatory legislation such as the Credit Card Act. These regulations have established guidelines specific to consumer age, verification of income, teaser rates and interest rate increases. Complying with these regulations will require changes to existing processes and creation of new toolsets to ensure organizations adhere to the guidelines. These new regulations will not only increase the costs associated with obtaining new customers, but also the long term revenue and value as changes in account terms will have to be carefully considered. The cost of on-boarding and servicing individual accounts continues to escalate, and internal resources remain flat. Due to this, organizations of all sizes are looking for ways to improve efficiency and decisions while minimizing costs. Optimization is an ideal solution to this problem. Optimized strategy trees can be easily implemented into current processes and ensure lending decisions adhere to organizational revenue, growth or cost objectives as well as regulatory requirements. Optimized strategy trees enable organizations to create executable strategies that provide on-going decisions based upon optimization conducted at a consumer level. Optimized strategy trees outperform manually created trees as they are created utilizing sophisticated mathematical analysis and ensure organizational objectives are adhered to. In addition, an organization can quantify the expected ROI of a given strategy and provide validation in strategies – before implementation. This type of data is not available without the use of a sophisticated optimization software application. By implementing optimized strategy trees, organizations can minimize the volume of accounts that must be manually reviewed, which results in lower resource costs. In addition, account terms are determined based on organizational priorities leading to increased revenue, retention and profitability.
By: Wendy Greenawalt Marketing is typically one of the largest expenses for an organization while also being a priority to reach short and long-term growth objectives. With the current economic environment, continuing to be unpredictable many organizations have reduced budgets and focused on more risk and recovery activities. However, in the coming year we expect to see improvements and organizations renew their focus to portfolio growth. We expect that campaign budgets will continue to be much lower than what was allocated before the mortgage meltdown but organizations are still looking for gains in efficiency and response to meet business objectives. Creation of optimized marketing strategies is quick and easy when leveraging optimization technology enabling your internal resources to focus on more strategic issues. Whether your objective is to increase organizational or customer level profit, growth in specific product lines or maximizing internal resources optimization can easily identify the right solution while adhering to key business objectives. The advanced software now available enables an organization to compare multiple campaign options simultaneously while analyzing the impact of modifications to revenue, response or other business metrics. Specifically, very detailed product offer information, contact channels, timing, and letter costs from multiple vendors and consumer preferences can all be incorporated into an optimization solution. Once defined the complex mathematical algorithm factors every combination of all variables, which could range in the thousands, are considered at the consumer level to determine the optimal treatment to maximize organizational goals and constraints. In addition, by incorporating optimized decisions into marketing strategies marketers can execute campaigns in a much shorter timeframe allowing an organization to capitalize on changing market conditions and consumer behaviors. To illustrate the benefit of optimization an Experian bankcard client was able to reduced analytical time to launch programs from 7 days to 90 minutes while improving net present value. In my next blog, we will discuss how organizations can cut costs when acquiring new accounts.
By: Wendy Greenawalt The economy has changed drastically in the last few years and most organizations have had to reduce costs across their businesses to retain profits. Determining the appropriate cost-cutting measures requires careful consideration of trade-offs while quantifying the short- and long-term organizational priorities. Too often, cost reduction decisions are driven by dynamic market conditions, which mandate quick decision-making. Due to this, decisions are made without a sound understanding of the true impact to organizational objectives. Optimization (optimizing decisions) can be used for virtually any business problem and provides decisions based on complex mathematics. Therefore, whether you are making decisions related to outsourcing versus staffing, internal versus external project development or specific business unit cost savings opportunities, optimization can be applied. While some analytical requirements exist to obtain the highest business metric improvements, most organizations have the data available that is required to take full advantage of optimization technology. If you are using predictive models, credit attributes and have multiple actions that can be taken on an individual consumer, then, most likely, your organization can benefit from strategies in optimizing decisions. In my next few blogs, I will discuss how optimization / optimizing decisions can be used to create better strategies across an organization whether your focus is marketing, risk, customer management or collections.
As the economic environment changes on what feels like a daily basis, the importance of having information about consumer credit trends and the future direction of credit becomes invaluable for planning and achieving strategic goals. I recently had the opportunity to speak with members of the collections industry about collections strategy and collections change management -- and discussed the use of business intelligence data in their industry. I was surprised at how little analysis was conducted in terms of anticipating strategic changes in economic and credit factors that impact the collections business. Mostly, it seems like anecdotal information and media coverage is used to get ‘a feeling’ for the direction of the economy and thus the collections industry. Clearly, there are opportunities to understand these high-level changes in more detail and as a result, I wanted to review some business intelligence capabilities that Experian offers – and to expand on the opportunities I think exist to for collections firms to leverage data and better inform their decisions: * Experian possesses the ability to capture the entire consumer credit perspective, allowing collections firms to understand trends that consider all consumer relationships. * Within each loan type, insights are available by analyzing loan characteristics such as, number of trades, balances, revolving credit limits, trade ages, and delinquency trends. These metrics can help define market sizes, relative delinquency levels and identify segments where accounts are curing faster or more slowly, impacting collectability. * Layering in geographic detail can reveal more granular segment trends, creating segments for both macro and regional-level credit characteristics. * Experian Business Intelligence has visibility to the type of financial institution, allowing for a market by market view of credit patterns and trends. * Risk profiling by VantageScore can shed light on credit score trends, breaking down larger segments into smaller score-based segments and identifying pockets of opportunity and risk. I’ll continue to consider the opportunities for collections firms to leverage business intelligence data in subsequent blogs, where I’ll also discuss the value of credit forecasting to the collections industry.
We've recently discussed management of risk, collections strategy, credit attributes, and the like for the bank card, telco, and real estate markets. This blog will provide insights into the trends of the automotive finance market as of third quarter 2009. In terms of credit quality, the market has been relatively steady in year-over-year comparisons. The subprime group saw the biggest change in risk distribution from 3Q08, with a -3.74 percent shift. Overall, balances have declined to just over $673 billion (- 4 percent). In 3Q09, banks held the largest total of outstanding automotive balances of $241 billion (with captive auto next at $203 billion). Credit unions had the largest increase from 3Q08 (with $5 billion) and the finance/other group had the largest decrease in balances (- $23 billion). How are automotive loans performing? Total 30- and 60-day delinquencies are still on the rise, but the rate of increase of 30-day delinquencies appears to be slowing. New originations are dominating in the Prime plus market (66 percent), up by 10 percent. Lending criteria has tightened and, as a result, we see scores on both new and used vehicles continue to increase. For new buyers, over 83 percent are Prime plus. For used buyers, over 53 percent are Prime plus. The average credit score changed from 762 in 3Q08 to 775 in 3Q09 -- up 13 points for new vehicles. For used vehicles in the same time period: 670 to 684, up 14 points. Lastly, let’s take a look at how financing has changed from 3Q08 to 3Q09. The financed amounts and monthly payments have dropped year-over-year as well as the average term and average rate. Source: State of the Automotive Finance Market, Third Quarter 2009 by Melinda Zabritski, director of Automotive Credit at Experian and Experian-Oliver Wyman Market Intelligence Reports
In a continuation of my previous entry, I’d like to take the concept of the first-mover and specifically discuss the relevance of this to the current bank card market. Here are some statistics to set the stage: • Q2 2009 bankcard origination levels are now at 54 percent of Q2 2008 levels • In Q2 2009, bankcard originations for subprime and deep-subprime were down 63 percent from Q2 2008 • New average limits for bank cards are down 19 percent in Q2 2009 from peak in Q3 2008 • Total unused limits continued to decline in Q3 2009, decreasing by $100 billion in Q3 2009 Clearly, the bank card market is experiencing a decline in credit supply, along with deterioration of credit performance and problematic delinquency trends, and yet in order to grow, lenders are currently determining the timing and manner in which to increase their presence in this market. In the following points, I’ll review just a few of the opportunities and risks inherent in each area that could dictate how this occurs. Lender chooses to be a first-mover: • Mining for gold – lenders currently have an opportunity to identify long-term profitable segments within larger segments of underserved consumers. Credit score trends show a number of lower-risk consumers falling to lower score tiers, and within this segment, there will be consumers who represent highly profitable relationships. Early movers have the opportunity to access these consumers with unrealized creditworthiness at their most receptive moment, and thus have the ability to achieve extraordinary profits in underserved segments. • Low acquisition costs – The lack of new credit flowing into the market would indicate a lack of competitiveness in the bank card acquisitions space. As such, a first-mover would likely incur lower acquisitions costs as consumers have fewer options and alternatives to consider. • Adverse selection - Given the high utilization rates of many consumers, lenders could face an abnormally high adverse selection issue, where a large number of the most risky consumers are likely to accept offers to access much needed credit – creating risk management issues. • Consumer loyalty – Whether through switching costs or loyalty incentives, first-movers have an opportunity to achieve retention benefits from the development of new client relationships in a vacant competitive space. Lender chooses to be a secondary or late-mover: • Reduced risk by allowing first-mover to experience growing pains before entry. The implementation of new acquisitions and risk-based pricing management techniques with new bank card legislation will not be perfected immediately. Second-movers will be able to read and react to the responses to first movers’ strategies (measuring delinquency levels in new subprime segments) and refine their pricing and policy approaches. • One of the most common first-mover advantages is the presence of switching costs by the customer. With minimal switching costs in place in the bank card industry, the ability for second-movers to deal with an incumbent is not one where switching costs are significant issues – second-movers would be able to steal market share with relative ease. • Cherry-picked opportunities – as noted above, many previously attractive consumers will have been engaged by the first-mover, challenging the second-mover to find remaining attractive segments within the market. For instance, economic deterioration has resulted in short-term joblessness for some consumers who might be strong credit risks, given the return of capacity to repay. Once these consumers are mined by the first-mover, the second-mover will likely incur greater costs to acquire these clients. Whether lenders choose to be first to market, or follow as a second-mover, there are profitable opportunities and risk management challenges associated with each strategy. Academics and bloggers continue to debate the merits of each, (1) but it is the ultimately lenders of today that will provide the proof. [1] http://www.fastcompany.com/magazine/38/cdu.html
To calculate the expected business benefits of making an improvement to your decisioning strategies, you must first identify and prioritize the key metrics you are trying to positively impact. For example, if one of your key business objectives is improved enterprise risk management, then some of the key metrics you seek to impact, in order to effectively address changes in credit score trends, could include reducing net credit losses through improved credit risk modeling and scorecard monitoring. Assessing credit risk is a key element of enterprise risk management and can addressed as part of your application risk management processes as well as other decisioning strategies that are applied at different points in the customer lifecycle. In working with our clients, Experian has identified 15 key metrics that can be positively impacted through optimizing decisions. As you review the list of metrics below, you should identify those metrics that are most important to your organization. • Approval rates • Booking or activation rates • Revenue • Customer net present value • 30/60/90-day delinquencies • Average charge-off amount • Average recovery amount • Manual review rates • Annual application volume • Charge-offs (bad debt & fraud) • Avg. cost per dollar collected • Average amount collected • Annual recoveries • Regulatory compliance • Churn or attrition Based on Experian’s extensive experience working with clients around the world to achieve positive business results through optimizing decisions, you can expect between a 10 percent and 15 percent improvement in any of these metrics through the improved use of data, analytics and decision management software. The initial high-level business benefit calculation, therefore, is quite important and straightforward. As an example, assume your current approval rate for vehicle loans is 65 percent, the average value of an approved application is $200 and your volume is 75,000 applications per year. Keeping all else equal, a 10 percent improvement in your approval rates (from 65 percent to 72 percent) would generate $10.7 million in incremental business value each year ($200 x 75,000 x .65 x 1.1). To prioritize your business improvement efforts, you’ll want to calculate expected business benefits across a number of key metrics and then focus on those that will deliver the greatest value to your organization.
I’ve recently been hearing a lot about how bankcard lenders are reacting to changes in legislation, and recent statistics clearly show that lenders have reduced bankcard acquisitions as they retune acquisition and account management strategies for their bankcard portfolios. At this point, there appears to be a wide-scale reset of how lenders approach the market, and one of the main questions that needs to be answered pertains to market-entry timing: Should a lender be the first to re-enter the market in a significant manner, or is it better to wait, and see how things develop before executing new credit strategies? I will dedicate my next two blogs to defining these approaches and discussing them with regard to the current bankcard market. Based on common academic frameworks, today’s lenders have the option of choosing one of the following two routes: becoming a first-mover, or choosing to take the role of a secondary or late mover. Each of these roles possess certain advantages and also corresponding risks that will dictate their strategic choices: The first-mover advantage is defined as “A sometimes insurmountable advantage gained by the first significant company to move into a new market.” (1) Although often confused with being the first-to-market, first-mover advantage is more commonly considered for firms that first substantially enter the market. The belief is that the first mover stands to gain competitive advantages through technology, economies of scale and other avenues that result from this entry strategy. In the case of the bankcard market, current trends suggest that segments of subprime and deep-subprime consumers are currently underserved, and thus I would consider the first lender to target these customers with significant resources to have ‘first-mover’ characteristics. The second-mover to a market can also have certain advantages: the second-mover can review and assess the decisions of the first-mover and develops a strategy to take advantage of opportunities not seized by the first-mover. As well, it can learn from the mistakes of the first-mover and respond, without having to incur the cost of experiential learning and possessing superior market intelligence. So, being a first-mover and second-mover can each have its advantages and pitfalls. In my next contribution, I’ll address these issues as they pertain to lenders considering their loan origination strategies for the bankcard market. (1) http://www.marketingterms.com/dictionary/first_mover_advtanage